Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics

نویسنده

  • Juan Carlos Marrero
چکیده

We report on a question, posed by L. Ornea and M. Verbitsky in [32], about examples of compact locally conformal symplectic manifolds without locally conformal Kähler metrics. We construct such an example on a compact 4-dimensional nilmanifold, not the product of a compact 3-manifold and a circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reductions of Locally Conformal Symplectic Structures and De Rham Cohomology Tangent to a Foliation

where ω is a closed 1-form. ω is uniquely determined by Ω and is called the Lee form of Ω. (M,Ω, ω) is called a locally conformal symplectic manifold. If Ω satisfies (1) then ω|Ua = d(ln fa) for all a ∈ A. If fa is constant for all a ∈ A then Ω is a symplectic form on M . The Lee form of the symplectic form is obviously zero. Locally conformal symplectic manifolds are generalized phase spaces o...

متن کامل

Reduction for Locally Conformal Symplectic Manifolds

It is shown how one can do symplectic reduction for locally conformal symplectic manifolds, especially with an action of a Lie group. This generalizes well known procedures for symplectic manifolds to the slightly larger class of locally conformal symplectic manifolds. The whole setting is very conformally invariant.

متن کامل

Hopf surfaces: a family of locally conformal Kähler metrics and elliptic fibrations

In this paper we describe a family of locally conformal Kähler metrics on class 1 Hopf surfaces Hα,β containing some recent metrics constructed in [GO98]. We study some canonical foliations associated to these metrics, in particular a 2-dimensional foliation Eα,β that is shown to be independent of the metric. We elementary prove that Eα,β has compact leaves if and only if α = β for some integer...

متن کامل

An Introduction to Complex, Kähler and Locally Conformal Kähler Geometry

In this note we briefly summarize the necessary tools from complex manifold theory in order to give an introduction to the basic results about Kähler and locally conformal Kähler manifolds. We look at many equivalent definitions of all three types of manifolds and examine in detail the parallels which arise in the theories. These parallels include the compatibility of metrics and fundamental 2-...

متن کامل

Classification of Bochner Flat Kähler Manifolds by Heisenberg, Spherical CR Geometry

A Bochner flat Kähler manifold is a Kähler manifold with vanishing Bochner curvature tensor. We shall give a uniformization of Bochner flat Kähler manifolds. One of the aims of this paper is to give a correction to the proof of our previous paper [9] concerning uniformization of Bochner flat Kähler manifolds. A Bochner flat locally conformal Kähler manifold is a locally conformal Kähler manifol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017